
Characterizing Software Engineering Work with
Personas Based on Knowledge Worker Actions

Denae Ford
North Carolina State University

Raleigh, NC, USA

dford3@ncsu.edu

Thomas Zimmermann, Christian Bird, Nachiappan Nagappan
Microsoft Research

Redmond, WA, USA

{tzimmer, cbird, nachin}@microsoft.com

Abstract—Mistaking versatility for universal skills, some com-
panies tend to categorize all software engineers the same not
knowing a difference exists. For example, a company may select
one of many software engineers to complete a task, later finding
that the engineer’s skills and style do not match those needed
to successfully complete that task. This can result in delayed
task completion and demonstrates that a one-size fits all concept
should not apply to how software engineers work. In order to gain
a comprehensive understanding of different software engineers
and their working styles we interviewed 21 participants and
surveyed 868 software engineers at a large software company
and asked them about their work in terms of knowledge worker
actions. We identify how tasks, collaboration styles, and perspec-
tives of autonomy can significantly effect different approaches
to software engineering work. To characterize differences, we
describe empirically informed personas on how they work. Our
defined software engineering personas include those with focused
debugging abilities, engineers with an active interest in learning,
experienced advisors who serve as experts in their role, and more.
Our study and results serve as a resource for building products,
services, and tools around these software engineering personas.

Index Terms—software engineering; personas; practical knowl-
edge work

I. INTRODUCTION

Jobs for nonroutine cognitive work are increasing faster

now than they have in the past 3 decades. In 2016, the

U.S. alone reported more than 60 million workers that fit

this criteria [1]. Industrial jobs that meet this criteria include

finance, marketing, research, business, and software engineering.

Another name for these types of employees are knowledge

workers. Davenport defines knowledge workers as individuals

applying their expertise to creative problems; people who think

for a living [2]:

Knowledge workers have high degrees of expertise,

education, or experience, and the primary purpose

of their jobs involves the creation, distribution, or

application of knowledge.

Observing roles of knowledge work has allowed us to use a

cross-industry term to describe how people work. However, we

have found that even within one large software organization,

each of these types of knowledge workers have different

approaches to applying their expertise to creative problems.

In his work, Davenport identifies different types of knowl-

edge workers such as controller, helper, and learner. He also

describes the idea that to understand their tasks means to

understand a knowledge worker [2]. In an attempt to bridge

the gap between different types of knowledge workers, we

start with one type, software engineers, and define how they

fit under the knowledge worker umbrella.

Organizations often assume there is only one type of software

engineer that fits many named job titles, but engineers disagree.

Wolkov, a software engineer at LinkedIn has gone on to call

out the identity crisis in software engineering,

“Let’s go back to being an industry that hires smart

engineers regardless of their title and pointing them

at problems and letting them solve them without con-

fusing them with ambiguous engineering titles [3].”

Like many other practitioners who document this experience,

Wolkov proposes we take a step back and no longer attempt

to match software engineers with general job descriptions; but

use practical expectations about the collaborative nature of

software engineering work.

To address this concern, we construct personas based on

data from software engineers on the nature of their work and

how they collaborate to get their work done. We do not believe

all software engineers are the same. Identifying different types

of software engineers can outline their tasks and help them be

more effective. Towards that end, this study aims to bridge the

gap in existing research with personas based on the amount

of time spent on various software engineering tasks. To the

best of our knowledge, our study is the first study performed

at a large software company understanding and quantifying the

time spent on various software development activities in order

to build personas for software engineers. Our novelty is further

strengthened by the fact that we adapt Reinhardt et al. [4]

knowledge worker actions to the time software engineers spend

in each of those actions. We use a mixed-methods approach

where we interview 21 software engineers and collect survey

responses from 868 engineers to gain a unique perspective of

working styles of developers in a large organization. Our results

indicate a diverse set of seven personas defined on the time

spent in tasks and described by their task selection process,

execution, and collaboration techniques.

The major contributions of this paper are:

1) Descriptions of how software engineers collaborate with

other knowledge workers on tasks at a large software

company (Section V)

2) Multi-faceted personas derived from statistical analysis

and qualitative descriptions of software engineering tasks

(Section VI)

3) Recommendations for how practitioners can use these

personas in software engineering (Section VII)

II. PERSONAS IN SOFTWARE DEVELOPMENT

In software development it is common to use personas in

order to better understand users [5]. More formally, personas

are behavioral specifications that embody the goals and needs

of archetypical users introduced several years ago [5]. Personas

were introduced to help developers understand and relate better

to the users of a system. Personas are widely used in different

software engineering domains ranging from requirements

engineering [6] to tool development [7] and security and

privacy [8].

Software companies use a variety of personas in varying

stages of their development cycle though vary rarely are they

supported by data. One example of this is when Microsoft

used the personas Mort, Elvis, and Einstein to define developer

profiles for tool features [9].

Personas can also be used to understand the overall usability

to aid early in the design process. As stated by Pruitt and

Grudin [10], personas can provide, “a broad range of qualitative

and quantitative data, and focus attention on aspects of design

and use that other methods do not.” Pruitt and Grudin found

that once personas are generated, it is easier to craft them into

new situations rather than recreate a user scenario. Identifying

users provides more information on how they can interact with

a system.

In addition, Freiss found that though persona descriptions

may not be explicit, they can help keep the design direction

user-focused [11]. One example of personas that follow this

pattern is GenderMag. GenderMag uses concrete facets of

gender differences, such as processing style and motivations,

to describe ways to encourage inclusive software development

[12]. Though genders were not concrete identifiers of each

declared personas, Marsden et al. performed experiments

that confirm perceptions of persona attributes with particular

genders [13]. This evaluation using GenderMag personas is not

only an example of how helpful personas can be in explaining

concepts, but also a building block for further experiments to

confirm how personas can be adapted.

III. RESEARCH QUESTIONS

We frame our study in the context of how software engineers

work. Our approach for determining how software engineers

work is grounded in knowledge worker actions as described

by Reinhardt and colleagues [4]. This study is guided by three

research questions.

RQ1 How do software engineers spend their time in knowledge

worker actions?

Previous work defines distinction between knowledge work-

ers based on the actions taken to complete a task. Reinhardt

et al. surveyed individuals at a large organization about their

tasks [4]. In this work, Reinhardt et al. identified a typology

TABLE I
ADAPTED KNOWLEDGE WORKER ACTIONS FOR SOFTWARE ENGINEERS

LEARNING

Learning and acquiring new knowledge, skills, or understanding, for example
taking courses, training, or observing others

ANALYZE

Examining something carefully in order to understand it, for example,
understanding unfamiliar code, debugging, reviewing log output

AUTHORING

Independently creating text or media content NOT with other people,
for example, writing code for personal projects, documentation, tutorials,
architecture documents, creating technical presentations, etc.

CO-AUTHORING

Collaboratively creating text or media content with other people, for example,
writing code with a team (such as company projects), documentation, tutorials,
architecture documents, creating technical presentations, etc.

DISSEMINATION

Sharing information about work results, for example, presenting in technical
meetings or brown bag lunches

EXPERT SEARCH

Finding an expert to help discuss or solve a problem, for example finding
someone to help fix a bug

FEEDBACK

Providing feedback on technical documents and code, for example, code
reviews, or architecture reviews

INFORMATION ORGANIZATION

Managing personal or organizational information, for example, taking notes,
tracking and prioritizing work for yourself or others

INFORMATION SEARCH

Retrieving specific information, for example, finding a bug report, wiki page,
specification, or API documentation

MONITORING

Keeping oneself or the organization up-to-date about selected topics, for
example, public tasks lists, reading status reports

NETWORKING

Interacting with other people and organizations to exchange information and
develop contacts, for example, attending meet-ups, conferences, participating
in online discussions

SERVICE SEARCH

Finding specialized tools, for example tools to visualize data

of how knowledge worker actions further define the tasks

execution processes of knowledge workers. Reinhardt et al.

also present each knowledge worker action in terms of guiding

roles. We adapt knowledge worker actions to tasks as they

apply to what software engineers encounter in their domain as

shown in Table I. We keep Reinhardt et al. knowledge worker

actions names to support qualitative research transferability.

RQ2 How do software engineers decide on their task, task

inputs, and task outputs?

Davenport describes a factor to understand knowledge work-

ers through complexity of work based on routine-repeatable

work and judgment-improvisational work [14]. There are

common tasks for which systematic and highly reliant on formal

rules and procedures are required and some that do not. To apply

this to software engineers, we are interested in the range of

autonomy for software engineers to select tasks, determine task

that need to be done based on ongoing work and deciding when

to move on to the next task. With these dynamics supported

by software engineering literature [15], [16], we identify these

as valuable details to determine distinctions between software

engineers.

RQ3 How do software engineers collaborate to complete a

task?

Software development at a large software company is based

on individuals working on different parts of a project and then

being able to join individual pieces together for a successful

final product. Davenport referenced collaboration and the

interdependence of tasks as one way to identify differences

between knowledge workers [14].

IV. METHODOLOGY

To answer our research questions, we used a mixed-methods

approach of semi-structured interviews, to qualitatively un-

derstand tasks software engineers complete, and surveys, to

gather quantitative insight on how time is spent in knowledge

worker actions. All study materials can be found in our online

appendix [17].

IV.A. Semi-Structured Interviews

Protocol. We organized interviews to better understand how

software engineers explain their work. We conducted half hour,

semi-structured interviews with software engineers at a large

software company. Each interview was led by the first author,

who was often accompanied by the second or third author. All

interviews were held in person or via Skype. Interviews were

audio recorded and later transcribed for analysis. Each interview

consisted of four parts, motivated by previous research on

knowledge workers.

1) Role of the participant. We asked about the role of the

participant at the company and what types of projects they

work on.

2) Tasks, inputs, and outputs. These questions were motivated

from Davenport’s discussion [14] on how knowledge

workers are defined by the tasks they manage. We

asked participants for three of their most common tasks

completed in their role and three tasks that might be

uncommon, but important to complete. Motivated by

Thomas and Baron [18], we asked about the inputs and

outputs of these tasks to better understand productivity of

software engineers in terms of knowledge work. For inputs,

we asked who selects the tasks and how. For outputs, we

asked who receives outcomes of a task and how they are

used. We also asked participants about specific tasks from

the previous work day to help ground their responses.

3) Knowledge worker actions. We asked participants how

often they perform knowledge worker actions introduced

by Reinhardt and colleagues [4]. We also asked who they

perform these actions with.

4) Collaboration. We asked participants about how they

collaborate with other colleagues. Specifically, we were

interested in the roles of their collaborators and whether

or not they were a member of their team. We also asked

about any tools they may use to facilitate collaboration

on these tasks.

Participants. We randomly selected 99 employees with Soft-

ware Engineer listed as their job title. We sent each an

invitation email and described our interests in their roles, tasks,

and projects to characterize software engineers as knowledge

workers. We received responses and interviewed 21 participants.

Participants were compensated for their time at the end of each

interview with a ten dollar meal voucher.

Data Analysis. We used a transcription service to transcribe

the audio recorded from interviews. We then coded interview

responses to questions about knowledge worker actions and

included responses to their time spent, task execution process,

and task selection in the survey. For example, participants

emphasized how often they collaborate with individuals in

similar roles, but on different teams. We also included this in

our survey as a free-response question.

IV.B. Follow-Up Survey

Protocol. We created a survey to gather and validate a wide

range of responses on how software engineers spend their

time. On average, participants took 15 minutes to complete

the survey. Our survey consisted of 30 questions as shown in

Table II. We used the guidelines for personal opinion surveys

by Kitchenham and Pfleeger [19] and guidelines from Harvard

Business Reviews for workplace surveys [20] to design our

survey.

Pilot Survey. We first conducted a pilot survey to capture a

range of tasks and collaboration styles that may not have been

gathered in interviews. The pilot survey included questions that

were asked in the interview including time spent, task execution,

and task selection. We used a combination of responses from the

interviews and pilot survey to inform multiple choice options

on the final survey about tasks and execution strategies that

software engineers have. All questions regarding tasks were

left as open ended questions.

The questions in the survey fell into the following groups.

1) Demographics. We collected demographic information

such as current role, years of experience, gender, and

internal organization. Additional questions included types

of projects respondents worked on, novelty of projects,

and ability to make independent decisions for projects.

2) Tasks. We asked about the inputs and outputs that are

common to software engineering tasks, who selects a

task, and when a task is completed. We offered survey

respondents the opportunity to write in an answer for

questions if the options listed did not apply to their tasks.

3) Time spent. Inspired by Reinhardt and colleagues, we

included a list of knowledge worker actions in the context

of software engineers and asked respondents to estimate

the number of hours they spend on each action a week. We

adapted knowledge worker actions to software engineering

(Table I) from interview responses about daily routines.

4) Collaborations. We asked respondents to select the job

titles of people who they regularly interact with and

TABLE II
OVERVIEW OF SURVEY QUESTIONS

DEMOGRAPHICS

Questions about → experience, gender, team size, other demographics (works
on open source, internal projects, autonomy, decision maker, expert), self
perceptions (thinker, doer, innovator, planner, etc.)

TIME SPENT

Please enter roughly how many hours per week you typically spend on each
of the activities. → the list of 11 knowledge worker actions adapted from
Reinhardt and colleagues [4] instantiated to the software engineering domain

How many hours in a week are spent → debugging code, writing code/creating
text/media for personal projects, writing code/creating text/media collabora-
tively, in code reviews, testing code, with emails, in meetings?

TASKS

What are the inputs for your various tasks?
What are the outputs for your various tasks?
Who selects the tasks you work on?
How do you know you are done working on a task?

COLLABORATIONS

Select the job titles of the people you regularly interact within your team,
outside your team, or both.
How many reviewers are included in code reviews of one of your changes?
Have you ever been brought on a different team to put out fires?

identify whether the collaboration with that role is within

their team, outside their team, or a combination of both.

We also asked about code reviews and whether respondents

have been brought on teams to help with emergencies

as we found this to be a common event participants

mentioned in interviews.

Participants. We invited 4594 employees with Software

Engineer listed as their job title at a large software company

and received responses from 891 respondents (response rate

19.4%). We offered respondents the option to enter a raffle

for four $75 Amazon.com gift certificates. The median years

of professional experience as a software engineer is 7 years

and the median years of reported experience at their current

company is 3 years.

Data Analysis. We analyzed the survey data in three phases.

First, we applied clustering on the time spent on knowledge

worker actions and resulted in seven clusters. Next, in the

descriptive analysis, we used the responses from the entire

survey to characterize each cluster. In the final phase, we used

the cluster descriptions to develop personas.

Clusters → Cluster Descriptions → Personas

Clustering. To answer RQ1, we used the responses to the

number of hours a week listed for each knowledge worker

action to cluster the survey participants in three steps:

Step 1: We included only participants who responded to the

time spent question, i.e., the sum of time spent in all

knowledge worker action was greater than zero hours. We

only wanted to include participants that explained how

their time was spent. Of the 891 survey respondents, 868

entered hours for each knowledge worker section.

�✁�✂
✄✁☎

✆✝✁✞✂
✟✁✠

✄✞✁✝✂
✆✞✁✡

✞✁✆✂
✝

✡✁✞✂
✆✁✄

✝✁☛✂
✆✁✞

✟✁�✂
✄✁✡

✄✁✠✂
✆✁✞

✝✁✠✂
✡✁✝

✄✁✝✂
✆✁�

✄✁✄✂
✆✁✟

✆✁✠✂
☛✁✠

✄✠✁☛✂
✆✡✁✞

✡✄✁☛✂
✞✁✝

✟✁✆✂
✡

☎✁✆✂
✡✁✆

✡✁✡✂
☛✁�

☎✁✞✂
✡✁✝

✄✁✆✂
✆✁✡

✄✁✞✂
✆✁✟

✟✁✝✂
✡✁✄

✆✁✟✂
☛✁✟

✡✁☛✂
☛✁✞

✆✁✠✂
☛✁✞

✠✁✄✂
✄✁✟

✝✟✁✆✂
✆✞✁✆

☎✁✞✂
✡✁✄

✄✁✠✂
✆✁✟

✡✁✄✂
✆

✟✁✡✂
✡✁✝

�✁✄✂
✡✁✞

✝✁✝✂
✆✁�

�✁☛✂
✡✁✠

✄✁☛✂
✆✁✡

✄✁☛✂
✆✁✄

✆✁✞✂
☛✁✞

✆✆✁✟✂
☎✁✡

✆�✁☛✂
�✁�

✞✁☛✂
✄✁✞

✟✁�✂
✄✁☎

✝✁✝✂
✡✁✡

�✁✞✂
✄✁☎

✞✁✆✂
✄✁�

�✁✟✂
✄✁✟

✠✁✞✂
✝✁✄

�✁☛✂
✄✁✄

�✁✟✂
✄✁�

✝✁✄✂
✡✁✆

�✁✞✂
✄✁�

✆✠✁✟✂
✠✁✄

✝✁✝✂
✡✁✡

✄☛✁✡✂
✆✝✁✟

✡✁✟✂
✆✁✡

☎✁✆✂
✡✁☎

✠✁✆✂
✝✁✡

✝✁✟✂
✡✁✄

✟✁✟✂
✄✁✡

✄✁�✂
✆✁✠

✄✁✠✂
✡

✡✁✡✂
✆✁✆

☎✁✝✂
✆✁✞

✆�✁�✂
✟✁✆

✄✁☎✂
✆✁✝

✄✁�✂
✆✁✟

✄✁�✂
✆✁✄

�✁✟✂
✡✁✟

✡�✁✟✂
✞✁✠

✆✆✁✝✂
✄✁�

✞✁✡✂
✡✁�

☎✁✟✂
✡

✝✁✄✂
✆✁✟

✆✁☎✂
☛✁☎

☎✁✠✂
✡✁✞

✆✡✁�✂
☎✁✞

✄✁✟✂
✆✁�

☎✄✁✝✂
✡✝✁✄

✆✁✝✂
☛✁✟

✄✁☎✂
✆✁✟

�✁✆✂
✄✁✡

✡✁�✂
✆✁✄

✝✁✄✂
✡

✡✁✄✂
✆✁✆

✡✁✆✂
✆

☛✁✠✂
☛✁✝

✆☛✁☎✂
✝✁✝

✡✆✁✝✂
✠✁✆

✆☛✁✡✂
✝✁�

✆☎✁✠✂
�✁☎

✄✁☛✂
✆✁✝

☎✁✠✂
✡✁✟

✠✁✆✂
✄✁✞

☎✁✟✂
✡✁☎

�✁✡✂
✄✁✆

✝✁✄✂
✡

✝✁☎✂
✡✁✆

✡✁☎✂
✆✁✡

☞✌✌
✍✎✍ ✏✑✒✏✓✑

✔✓✕✖✗✑✘ ✙
✚✛ ✏✑✒✏✓✑

✔✓✕✖✗✑✘ ✎
✎✎ ✏✑✒✏✓✑

✔✓✕✖✗✑✘ ✜
✢✙✜ ✏✑✒✏✓✑

✔✓✕✖✗✑✘ ✣
✤✣✢ ✏✑✒✏✓✑

✔✓✕✖✗✑✘ ✛
✢✤✜ ✏✑✒✏✓✑

✔✓✕✖✗✑✘ ✤
✜✥ ✏✑✒✏✓✑

✔✓✕✖✗✑✘ ✢
✢✢✍ ✏✑✒✏✓✑

✦✧
★✩
✪✫
✪✬

✭✪
★✮
✯✰
✫✪
✬

✭✱
✲✳
✴✩
✫✪
✬

✵✴
✶★
✱✲
✳✴
✩✫✪
✬

✷✫
✸✸
✧✹
✫✪
★✲
✫✴
✪

✺✻
✼✧
✩✲
✽✧
★✩
✾✳

✿✧
✧❀
❁★
✾❂

❃✪
❄✴
❅
✩✬
★✪
✫✰★
✲✫✴
✪

❃✪
❄✴
✽✧
★✩
✾✳

❆
✴✪
✫✲✴
✩✫✪
✬

❇✧
✲❈
✴✩
❂✫✪
✬

✽✧
✩❉
✫✾
✧
✽✧
★✩
✾✳

!"#$%&'()

*+,()-.(/')

012#3)

4(%5'+6()

*+,()-.(/')

073

❊❋❊●

❍❋■

Fig. 1. The seven clusters of how software engineers spend their time. Each
row corresponds to a cluster and each column to a knowledge worker action.
The top number in each cell indicates the average relative time spent (as
a fraction) and the bottom number the absolute time spent (in hours). The
average relative time spent for each cluster sums to 1.

Step 2: We normalized the time each person spends across

knowledge worker actions by computing the percentage a

person spends in each action.

Step 3: We used k-means clustering [21] to iteratively group

respondents who reported similar relative time spent for

each knowledge worker action into groups. To determine

the appropriate number of clusters we plotted the within

groups sum of squares by the number of clusters and

identified a bend in the plot. We observed the bend at

k = 7 and manually inspected the clusterings for 7 to 10

clusters. We chose the clustering with 7 clusters because

the cluster sizes were more balanced, i.e., no cluster

represented only a small set of people.

The result of the clustering is shown in the heat map in

Figure 1. The top row corresponds to the population of 868

developers who responded to the time spent question. Each

subsequent row corresponds to a cluster. For example, the

second row corresponds to Cluster 1 which represents 118

people. Each column corresponds to a knowledge worker action.

A cell (x, y) indicates the average time that developers in a

cluster x spend on action y. For example, developers in Cluster

1 spend on average 7.7% of their time on Learning; the 7.7%

correspond to 3.5 hours.

Cluster Descriptions. To answer RQ2, we used statistical

differences between tasks, task inputs, and task outputs reported

as cluster descriptions. The results are summarized in Table III.

We used a decision tree to explain how the clustering algorithm

built the clusters and to characterize the clusters with respect

to the time spent question. The results are in the left column

of Table III. For example, most developers is Cluster 3 spent

less than 19.29% Co-authoring and at least 31.41% Analyzing.

In Cluster 7, most developers spent at least 42.18% of their

time Co-authoring.

For each cluster, we identified statistically significant dif-

ferences with respect to how developers responded to the

other questions in the survey. We used the Fisher Exact Value

(for binary variables) and Mann-Whitney U tests to determine

significant differences. The results of these test are summarized

in the right column of Table III. For example, developers in

Cluster 2 have significantly more entry-level engineers than

the other clusters (52.0% vs. 30.6%). Software engineers in

this cluster also have less professional experience than other

clusters (5.2 vs. 8.8 years).

Persona Development. In the final phase, we used the cluster

descriptions and interview transcripts to infer personas that

are representative of each cluster. We use a narrative style to

present the personas in Section VI, which is recommended in

user experience design to describe personas [22].

In addition, after personas were identified, we conducted

member checking [23] with interview participants to confirm

personas they identify with. We sent interview participants a

survey, similar to that described in Section IV-B and received

responses from 20 of the 21 interview participants. We were

not able to reach one participant who left the company.

We determined their time spent distributions based on their

responses to interview questions about how they spend a typical

day. We were able to identify each interview participant with

a persona.

V. COLLABORATION STYLES

To answer RQ3, we explored collaboration in two primary

ways. First, we investigated who software engineers collaborate

with in terms of different roles in their own and other teams.

Second, we explored how they collaborate by examining the

methods of collaboration and channels of communication that

the engineers employ.

During the interviews we asked participants about who they

conduct knowledge worker actions with and how often. We

also asked about who the software engineers collaborate with

in our survey. When asked about the roles and how often

they collaborate with other people on their teams, participants

mentioned how collaborations occurred within and outside their

team; acknowledging that they also exist across different roles.

Table IV shows a summary of the roles that software

engineers collaborate with within and outside of their teams

(and both), based on survey responses. Unsurprisingly, software

engineers collaborate mostly with other software engineers,

both on their team and other teams. The non-engineer roles that

they collaborate highly with are their engineering managers and

project managers. Finally, the roles outside of the teams that

they collaborate with most are scientists (e.g., data scientists

and applied scientists) and operations specialist (e.g., business

operations and service operations). When we quantitatively

examined the roles that software engineers collaborate with

across the seven clusters the only statistically significant

difference we found was that Cluster 5 collaborates with

operations specialists about half as much as the average. We

thus conclude that there is little difference in who each of the

clusters collaborates with.

A number of forms of collaboration emerged during our

interviews. Reviewing code and co-authoring code were the

primary collaborative activities, while the primary collaborative

communication channels were meetings, email, and impromptu

office discussions (often mentioned in interviews as interrup-

tions).

V.A. Collaborative Cluster Comparison

Although we found little difference in the roles that clusters

collaborate with, we discovered that the types and frequency of

collaborative activities were some of the most differentiating

aspects of these clusters.
For example, Cluster 7 is the one of least collaborative

clusters, as they spend less time in meetings, writing email,

or dealing with interruptions from other engineers. Their

outputs are engineering artifacts (code changes and bug reports)

rather than items intended to be shared with others (reports,

presentations, and analysis results). The only collaborative

activity that they engage in highly is co-authoring code for the

company, something they do four times as much as the other

clusters. Cluster 2, comprised of more entry level engineers

than any other cluster, is similar in that they are minimally

collaborative on nearly all fronts; the difference between these

clusters being that Cluster 2 spends less time co-authoring

code while Cluster 7 spends dramatically more.
In contrast, Cluster 6, is highly collaborative. Engineers in

this cluster spend far less time writing code compared to the

average, but spend around twice as much time conducting

code reviews, in meetings, writing emails, and answering

interruptions. They are often experts (which enables them

to provide useful feedback) and are twice as likely to be called

in to put out fires. Both their inputs and outputs are also

highly collaborative, including handling customer concerns,

management inquiries, ad-hoc team discussions, as well as

making presentations and writing design documents.
Other clusters are more nuanced in their forms of collabora-

tion. For instance, Cluster 4 spends more time in meetings and

writing email than the average, but participates less in code

reviews and co-authoring code, while Cluster 5 spends more

time providing feedback in code reviews than the average and

dramatically more time co-authoring code.

V.B. Code Review

Reviewing code that goes into a major product is an

important part of the development process [24]. In interviews

participants acknowledged code review as one of the most

collaborative aspects of their job. The code review process

involved multiple knowledge worker actions. In the code review

process, the authoring software engineer must find the most

appropriate engineers to review their changes (Expert Search)

and the reviewing software engineers offer suggestions on how

to enhance the code (Feedback). From the survey, participants

indicated on average they spend approximately 3.2 hours in

code review per week and that the typical code review involves

four people.
Depending on the particular task, writing code can be

a collaborative activity [25]. Engineers working on one

TABLE III
DESCRIPTIONS OF SOFTWARE ENGINEERING CLUSTERS

Cluster Significant differences with respect to demographics, time spent, tasks, inputs, and outputs

Cluster 1
Co-authoring < 19.29%
Analyzing < 31.41%
Authoring ≥ 23.67%

OR

Co-authoring ≥ 19.29%
Co-authoring < 42.18%
Authoring ≥ 19.18%

↑ Professional experience 10.0 vs. 8.4 years
↑ Work on internal projects 53.1% vs. 41.6%
↑ Have a lot of autonomy 65.5% vs. 54.7%

↓ Time: debugging code 4.1 vs. 5.5 hours
↑ Time: writing code for personal projects 5.5 vs. 1.3 hours
↓ Time: writing code for company 3.3 vs. 7.8 hours
↓ Time: code reviews 2.6 vs. 3.3 hours

↑ Output: source code documentation 56.4% vs. 44.7%
↑ Output: detailed team reports 40.4% vs. 26.6%

Cluster 2
Co-authoring < 19.29%
Analyzing < 31.41%
Authoring < 23.67%
Feedback < 19.29%
Learning ≥ 23.75%

↑ Entry-level engineer 52.0% vs. 30.6%
↓ Professional experience 5.2 vs. 8.8 years
↓ Company experience 2.9 vs. 5.0 years
↓ Identify as expert on a team 12.8% vs. 52.3%
↓ Have a lot of autonomy 27.7% vs. 58.0%
↓ Flexible to make decisions on team 34.0% vs. 58.1%

↓ Time: writing code for company 3.1 vs. 7.3 hours
↓ Time: code reviews 1.4 vs. 3.3 hours
↓ Time: being interrupted 4.2 vs. 5.6 hours

↓ Input: customer concerns 30.3% vs. 51.6%
↓ Input: ad-hoc discussions with team 30.3% vs. 69.0%
↓ Output: data analysis result 15.6% vs. 37.6%
↓ Output: product feature 43.8% vs. 62.7%

↓ Tasks: I chose tasks 45.5% vs. 64.0%
↓ Tasks: program manager selects task 12.1% vs. 29.0%

Cluster 3
Co-authoring < 19.29%
Analyzing ≥ 31.41%

↓ Work on internal projects 31.8% vs. 44.9%
↓ Identify as expert on a team 33.6% vs. 52.5%
↑ Changed from expert to non-expert 54.2% vs. 38.1%
↓ Degree of independence 4.3 vs. 5.0 points

↑ Time: debugging code 10.3 vs. 4.5 hours
↓ Time: writing code for company 1.5 vs. 8.0 hours
↓ Time: meetings 4.4 vs. 5.1 hours

↓ Input: specifications 46.6% vs. 60.0%
↓ Input: business requirements 34.0% vs. 54.9%

↓ Input: user scenarios 59.2% vs. 72.2%
↓ Input: customer concerns 40.8% vs. 52.2%
↓ Input: ad-hoc discussions with team 57.3% vs. 68.9%
↓ Output: source code documentation 35.3% vs. 48.1%
↓ Output: presentations 20.6% vs. 33.2%
↓ Output: design documents 32.4% vs. 46.1%
↓ Output: product feature 52.9% vs. 63.3%
↓ Output: detailed team reports 17.6% vs. 30.2%

↑ Tasks: done when formal agreement from peer developer
13.0% vs. 5.9%

Cluster 4
Co-authoring < 19.29%
Analyzing < 31.41%
Authoring < 23.67%
Feedback < 19.29%
Learning < 23.75%

↑ Entry-level engineer 38.6% vs. 29.3%

↓ Time: debugging code 4.2 vs. 5.8 hours
↓ Time: writing code for personal projects 1.8 vs. 1.9 hours
↓ Time: writing code for company 2.4 vs. 9.0 hours
↓ Time: code review 2.9 vs. 3.4 hours
↑ Time: emails 6.3 vs. 5.6 hours
↑ Time: meetings 5.7 vs. 4.8 hours

↓ Input: code from other engineers 61.2% vs. 72.5%
↓ Input: live issues they noticed 51.0% vs. 60.0%

↓ Output: source code check-ins 89.7% vs. 96.7%
↓ Output: bug fixes 86.2% vs. 94.5%
↑ Output: presentations 38.5% vs. 28.7%
↑ Output: detailed team reports 36.4% vs. 25.4%

↑ Tasks: program manager selects task 35.0% vs. 25.6%
↓ Tasks: done when code checked into repository

39.4% vs. 51.4%

Cluster 5
Co-authoring ≥ 19.29%
Co-authoring < 42.18%
Authoring < 19.18%

↓ Collaborate with Operations Specialist inside their team
18.9% vs. 40.0%

↓ Time: writing code for personal projects 0.8 vs. 2.2 hours
↑ Time: writing code for company 12.3 vs. 5.6 hours
↑ Time: code review 3.6 vs. 3.1 hours

↑ Input: management inquiries 60.7% vs. 50.4%
↑ Input: code from other engineers 80.0% vs. 66.6%
↑ Input: ad-hoc discussions with team 75.2% vs. 65.2%

Cluster 6
Co-authoring < 19.29%
Analyzing < 31.41%
Authoring < 23.67%
Feedback ≥ 19.29%

↓ Entry-level engineer 12.1% vs. 33.5%
↑ Professional experience 10.7 vs. 8.4 years
↑ Company experience 6.9 vs. 4.7 years
↓ Work on open source 1.6% vs. 9.9%
↑ Identify as expert on a team 73.4% vs. 48.1%
↓ Work on not yet release projects 23.4% vs. 38.1%
↑ Put out fires 82.0% vs. 40.4%

↓ Time: debugging code 3.8 vs. 5.5 hours
↓ Time: writing code for personal projects 0.7 vs. 2.0 hours
↓ Time: writing code for company 1.6 vs. 7.5 hours
↑ Time: code review 7.0 vs. 2.9 hours
↑ Time: emails 9.4 vs. 5.5 hours
↑ Time: meetings 7.6 vs. 4.8 hours
↑ Time: being interrupted 9.4 vs. 5.3 hours

↑ Input: design documents 70.6% vs. 55.4%
↑ Input: business requirements 66.7% vs. 50.7%
↑ Input: user scenarios 88.2% vs. 68.9%
↑ Input: customer concerns 70.6% vs. 49.0%
↑ Input: management inquiries 66.7% vs. 51.4%
↓ Input: API documentation 39.2% vs. 54.5%
↑ Input: ad-hoc discussions with team 80.4% vs. 66.2%
↑ Output: presentations 47.1% vs. 30.2%
↑ Output: design documents 66.7% vs. 42.4%

↑ Tasks: I chose tasks 78.4% vs. 61.9%
↑ Tasks: product owner selects task 21.6% vs. 7.6%
↓ Tasks: done when code approved by code review

29.4% vs. 45.9%

Cluster 7
Co-authoring ≥ 42.18%

↓ Time: debugging code 4.0 vs. 5.5 hours
↑ Time: writing code for company 20.9 vs. 5.0 hours
↓ Time: emails 4.0 vs. 6.0 hours
↓ Time: meetings 3.7 vs. 5.2 hours
↓ Time: being interrupted 4.0 vs. 5.8 hours

↑ Input: bug reports 84.9% vs. 74.3%

↑ Output: source code check-ins 100.0% vs. 94.0%
↑ Output: bug fixes 98.8% vs. 91.3%
↓ Output: presentations 22.1% vs. 32.7%
↓ Output: data analysis result 26.7% vs. 38.0%
↓ Output: detailed team reports 12.8% vs. 30.6%

↑ Tasks: done when deliverables are tested 73.3% vs. 59.7%

TABLE IV
BREAKDOWN OF ROLES SOFTWARE ENGINEERS COLLABORATE

WITHIN/WITHIN & OUTSIDE/OUTSIDE THEIR TEAM

Within &
Within Outside Outside

Project Manager 41.80% 42.70% 15.50%
Software Engineer 41.30% 55.20% 3.60%
Software Engineer 2 37.30% 59.40% 3.20%
Senior Software Engineer 33.00% 63.00% 3.90%
Principal Software Engineer 29.70% 54.70% 15.60%
Software Engineering Lead 40.00% 53.80% 6.20%
Engineering Manager 53.20% 40.90% 6.00%
Architect 31.70% 29.50% 38.80%
Designer 38.50% 18.00% 43.40%
Scientist 23.60% 14.60% 61.80%
Operations Specialist 16.00% 63.70% 20.30%

component often must consult with owners of related or

dependent components (Expert Search). Interview participants

often sought out expertise and ideas from team members

prior to undertaking a coding task. Some teams practice

pair programming, which is a nearly constant collaborative

process. We therefore asked survey respondents how much

time they spend writing code for the company (presumably in

collaboration with other company engineers); the average time

reported was 9.4 hours.

V.C. Time Spent in Meetings

Prior work acknowledges many organizational tasks that as

a collaborative part of the software engineering workflow [26].

These tasks require some method of communication between

a software engineer and other team members. Thus, we also

asked participants about the amount of time participants spend

in meetings, emails, and interruptions. Participants revealed

that they spent approximately 5 hours of their time in meetings,

6 hours in emails, and 6 hours of their time being generally

interrupted on average over the course of a week.

VI. SOFTWARE ENGINEERING PERSONAS

To interpret our findings from RQ1, RQ2, and RQ3, we give

a face to clusters through seven personas to describe software

engineers: Acantha, Lilo, Isabelle, Cameron, Iman, Ava, and

Ciara. We used time spent clusters and cluster descriptions

to inform our personas. In addition, we support each persona

with quotes from an interview participant, labeled S#, who

identified with the persona. We selected quotes from interview

participants that demonstrate depth of distinct personas.

VI.A. Acantha, the Autonomist Acumen ← Cluster 1

Acantha is known for her autonomy and keen abilities to

make good judgments when writing code. Her long tenure as a

software engineer has supported her decision making abilities.

She spends the majority of her time writing code independently

on personal projects and also spends a significant amount of

time working on internal projects. On average, more than 20%

of her time is spent in the Authoring knowledge worker action.

Interview participants who identified with this persona also

talked about how their professional experience has affected

their success. S8 mentions how their autonomy and experience

have greatly influenced their risk taking abilities:

You know, I’m very much a risk-taker and I’d much

rather ask for forgiveness. I’d much rather cross the

line and wait for somebody to catch me. I’m willing

to cross the line, and I do, and occasionally I get

my hand slapped. I’m in this wonderful position.

VI.B. Lilo, the Continuous Learner ← Cluster 2

Lilo is known for her interest in learning and getting adapted

to a new team early in her career. She spends, on average,

more than 23% of her time in the Learning knowledge worker

action. She takes a great interest in watching online lectures

to brush up on the latest frameworks and technologies that

she may be able to add to a new project. At this stage in her

career she is often assigned tasks rather than choosing tasks

to work on. Though she may be an entry-level engineer with

little professional experience at the large company, she takes

an initiative to get caught up quickly on team projects.

Interview participants who identified with this persona

reflected on being relatively new to their organization. The

individuals who identified with this persona also do not claim

to be an expert on the team. S7 talks about how their lack of

experience encourage them to find someone who did:

I mean it’s usually scoped but we don’t know the

A, B, C’s of it, like where to start, how to start and

any such things. But it usually starts with talking to

different people. We know at least one contact who

would then redirect us to multiple other contacts or

they redirect us to some other people.

VI.C. Isabelle, the Investigator ← Cluster 3

Isabelle is best known for being the top investigator on her

team. She spends the most time, over 30% on average, in the

Analyzing knowledge worker action. She spends much time in

the trenches of projects debugging and making sense of code.

Isabelle recently changed from being one of the top experts

on her team to being a novice in her new team. However,

this has not impeded her success as she was able transition

smoothly and adapt the same techniques of connecting with

peer developers to ensure success on her new team.

Interview participants who identified with this persona also

spent a significant amount of time debugging code. S1 describes

the process for debugging:

It depends on what kind of task. For example, to fix

bugs in theory you need to reproduce the problem

and to just do a debug step-by-step, going into the

very developed source code to figure it out. That

takes a long, long time sometimes.

VI.D. Cameron, the Communicator ← Cluster 4

Cameron is considered to be a communicator because of

her ability to distribute her time evenly and early in her career

while securing the logistics of her work environment. She is

able to spread her time across all knowledge worker actions

well. However, since she is so early in her career she also seeks

guidance from her program manager and others on how to

approach tasks. Cameron spends a lot of time communicating

about how to set up and approach her work through emails,

meetings, reports, and presentations, but that sometimes gets

in the way of writing code.

Interesting enough, interview participants who identified

with this persona also facilitated a lot of knowledge sharing,

which can inhibit writing code. S5 talks about not being able

to produce code, but arranging resources:

The concentrated work time usually involves coding.

Right now it involves learning, collating documen-

tation, arranging resources for the people who are

gonna come after me.

VI.E. Iman, the Interactive ← Cluster 5

Iman is known for her activity with collaborative code writing

style but also for her dynamic level of interaction that goes on

within her team in terms of the Co-authoring knowledge worker

action. Aside from being very helpful in code reviews, much

of her tasks to complete come from everyone else. On average,

many of her tasks come from management questions, source

code from other engineers, and also spontaneous conversations

within her team.

Interview participants who identified with this cluster also put

a high value on interacting with team members and refining

tasks with others. S19 talks about how her project stages

encourage these ad hoc conversations:

So we do all the code review ourselves - that’s a very

important part. [Another] is the stand-ups, which

have to be done - not every day, but twice in a week,

we have meetings. And that’s very important because

as we are still in a preview tool, so we have a lot of

discussions.

VI.F. Ava, the Advisor ← Cluster 6

Ava is known for the high value she places on being helpful

to others and giving feedback. On average, she spends over

20% of her time offering feedback. She has significantly

more professional experience, identifies as an expert, and puts

out more fires than others when her team is in need of an

emergency product fix. Her professional experience shines

through the most as she has more years at her large company

than others. Her ability to put out fires and help the team in

unplanned emergency situations demonstrates how often she

gets interrupted while working.

Interview participants who also identified with this persona

place a high value on advising and helping others. S4 mentioned

trying to help people put out their own fires by pointing them

in the right direction when they come to them for help:

That’s where people have an actual coding problem

and they don’t know what to do to proceed, and

you’re trying to give them advice or “here’s an

example of code you can follow,” or “go read this

article.” You’re kind of trying to hand them enough

information so they can go solve the problem.

VI.G. Ciara, the Team Coder ← Cluster 7

Ciara embodies this idea of being a team coder for her

immense amount of time in the Co-authoring knowledge worker

action (sometimes over 40%). She spends a significant amount

of time producing code for her large company with a team by

her side. Her major tasks are to sift through bug reports and

fix them with source code check-ins. Ciara does not spend a

lot of time in emails, meetings, or presentations because she

is busy testing bug fixes.

Interview participants who identified with this persona also

emphasized that they do bug fixes often. S21 discusses one

main focus of their role includes testing fixes:

My role, in particular has three things that we focus

on. One is basically our automated test runs. This

helps us keep the business running. Basically, when

the service team deploys changes or updates stuff or

new content comes in, we have a suite of tests that

run four times a day. So a lot of times something

might roll out and because they’re the service team,

they don’t really do as much robust testing from the

client side.

VII. DISCUSSION

VII.A. Persona Takeaways

Inclusion through Persona Use. Ultimately the goal of

identifying personas is to allow user experience researchers

to help users with products, services, or navigate a landscape.

However, how can we effectively help users navigate this space

if we do not know who those users are?

Personas inject a human aspect that is often missed when

discussing those who make software. Thinking about different

cultural approaches to knowledge work from a demographic,

geographic, team, and tenure perspective encourages the idea

that people make software and these same people work based of

their prior experiences. For example, Burnett et al. [12] include

a range of learning styles that inform widely used and insightful

personas that can be connected to real people. Identifying

these personas encourages researchers and practitioners to think

broadly of all the users and helps us be more inclusive of the

many types of users. This will also encourage others to plan

for the different types of software engineers that have yet to

be identified. In addition, this will help include a wide array of

perspectives in the dialogue for how software engineers work.

Thus, opening the opportunity for an inclusive invitation for

others, such as women, to join this field.

Transient Modes. With these personas, we want to make clear

that these personas identify some approaches to how software

engineers work and note there is more work to be done. One

example is transitions between personas. Participants from

interviews and open responses in the survey mentioned this

idea of having to switch between modes on a project. Some

emphasized that it depends on what project has demanding

deadlines at that particular time. We have seen this same depen-

dency on deadlines and task distribution in other knowledge

worker spaces [27].

In support of transitions, interview participants mentioned

how they worked on a team until becoming an expert. After

being considered as one of the experts on the team, the

participant switched teams and were then considered a novice to

that new team but were able to adapt swiftly. This phenomenon

would be interesting to study at scale and determine what

exactly are those particular skills that aid in re-training to

become an expert in another team. Two question here are, a)

What strategies have prior experts developed that facilitate

their smooth transition to the next team? and b) How is this

transition demonstrated across personas?

Additional Personas. Identifying these personas now allows

us to be more aware of the different types of personas. However,

this also opens up the idea that there could be more. Some of

the clusters we determined have many more software engineers

than others; some with as much as a 100 employee difference.

This demonstrates the idea that if we expanded the cluster

with a larger range we may have determined many more

clusters across time spent in knowledge worker actions. In

addition to the hours of time spent across knowledge worker

actions, the significant differences across the self-reported

descriptions of autonomy and the task execution process allude

to the possibility that there are many other dimensions that

influence what a software engineer does, for example tools and

technology used by engineers.

VII.B. Implications

Research. This work offers much insight to a new direction

for conducting software engineering studies. We encourage

empirical software engineering researchers to report more

details about the persona of the software engineers they may

build tools for or conduct studies with. Now that we have much

literature of how software engineers approach their tasks we

can now design studies that cater to each of these personas.

We can question whether there are certain features of

development that attract one persona more than another.

For example, Should we build tools that tailor to Ciara’s

collaborative nature of writing code with a team or build tools

that can address multiple styles of collaboration? Another

example of this is if a software engineer identified best with

Isabelle, they may have a greater interest in advanced features of

debugging tools that can facilitate an analysis. These personas

can help companies understand tradeoffs of supporting one

persona over another.

Practice. With this work, software engineering teams in

industry can now cater to these roles and have company courses

to enhance their employee experience according to their persona

description. We are not implying that a software engineer will

always fit into one persona and have an interest that will always

relate to that persona. However, we are recommending that

technology organizations encourage software engineers to seek

resources to support the working style of software engineers

on these types of projects.

For example, if a software engineer identifies best with Lilo,

then software engineers should have company resources that

will encourage them to stay informed of new technology as

they continue to work on new projects to help this individual

be effective.

VIII. LIMITATIONS

One major constraint of this work is that we only sam-

pled one large company. As companies and organizations

have different cultures, it may not be clear how this work

may be able generalize to online communities, for example.

However, Microsoft is a large company with a great degree

of internal diversity with respect to software engineering

practices and domains, and its employees come from a

wide array of backgrounds. We intentionally used Maximum

Variation Sampling [28] when selecting interview participants

within this large company. Deploying our survey in additional

software organizations and communities will shed light on the

generalizability of our findings.

Another risk of this work is that interview participants may

have felt pressured to over exaggerate their tasks and how they

get them done. In addition, having two interviewers may have

intimidated some participants and encouraged them to over

emphasize their completed tasks. Including similar questions

from our interview on the survey was one approach we took

to mitigate potential for biased task explanations in our data.

IX. RELATED WORK

Studying how software engineers approach their work

process is the foundation of empirical software engineering [29],

[30]. According to Basili, “The researcher’s role is to under-

stand the nature of processes and products, and the relationship

between them” [31]. In software engineering research, the

way code is written is a top priority, but so are the software

engineers writing it. The works related to this project include

how knowledge workers are studied, approach their work, and

how software engineers are classified in the practical space.

Characteristics of Software Engineers. Many researchers

have demonstrated the different characteristics and working

styles of software engineers. Li et al. [32] identified characteris-

tics of developers including personality, decision making skills,

ability to engage with a team, and software design approaches

to outline what makes a great software engineer. In this work,

researchers were able to conduct semi-structured interviews

with developers across a large software company to identify

53 attributes of a software engineer. Though their study has

breadth, it lacks the details of actions and processes used by

software engineers that our work reflects. Researchers have

also considered characterizing based on software engineer mo-

tivations. Beecham demonstrates that many of these motivators

are context dependent on culture, experience, and individual

characteristics of software engineers [33]. Though this work

acknowledges that context dependent factors may exist, they

do not mention how these factors impact types of software

engineers work as we show in our work.

Software Engineering Personas. One way to understand how

software engineers work is to understand how they fit on their

team and the role they play. Zhu et al. [34] identified tools that

can help support the development processes based on their role.

However, this does not provide fluidity that roles in software

engineering are not always clearly defined as Chimalakonda and

colleagues found [35]. In the aforementioned work, researchers

defined a software engineering ontology that helped define

other challenges in understanding software engineering roles.

The work by Chimalakonda and colleagues is also motivated by

Reinhardt et al. [4] description of knowledge worker roles, but

did not identify that the knowledge worker actions that define

personas that may exist on a spectrum as we demonstrate.

X. CONCLUSION

Software engineers are often classified in a single group that

do not take their tasks and working style into consideration. To

discourage this invalid categorization, we adapted knowledge

worker actions to better understand how software engineers at

a large software company work. We interviewed and surveyed

software engineers across internal organizations to comprehend

their tasks, approaches, and who they work with. We used

statistical analysis of how software engineers spend their time

to provide a data-driven approach to identify clusters and inform

our seven personas. We encourage researchers and practitioners

to apply these personas to other software organizations to

confirm how we can expand these personas and continue to

grow informed descriptions of how software engineers work. In

concert with prior literature, we are just scratching the surface

of how these personas could benefit software engineers and

those studying other knowledge workers.

REFERENCES

[1] J. Zumbrun, “The rise of knowledge workers is accelerating
despite the threat of automation,” May 2016. [Online]. Avail-
able: http://blogs.wsj.com/economics/2016/05/04/the-rise-of-knowledge-
workers-is-accelerating-despite-the-threat-of-automation/

[2] T. H. Davenport, Thinking for a living: how to get better performances

and results from knowledge workers. Harvard Business Press, 2013.
[3] A. Wolkov, “There is only one type of software engineer,” Jul

2016. [Online]. Available: https://www.linkedin.com/pulse/only-one-
type-software-engineer-adam-wolkov

[4] W. Reinhardt, B. Schmidt, P. Sloep, and H. Drachsler, “Knowledge
worker roles and actionsresults of two empirical studies,” Knowledge

and Process Management, vol. 18, no. 3, pp. 150–174, 2011.
[5] A. Cooper et al., The inmates are running the asylum:[Why high-tech

products drive us crazy and how to restore the sanity].
[6] M. Rahimi and J. Cleland-Huang, “Personas in the middle: automated

support for creating personas as focal points in feature gathering forums,”
in Proceedings of the 29th ACM/IEEE international conference on

Automated software engineering. ACM, 2014, pp. 479–484.
[7] S. Faily and J. Lyle, “Guidelines for integrating personas into software

engineering tools,” in Proceedings of the 5th ACM SIGCHI symposium

on Engineering interactive computing systems. ACM, 2013, pp. 69–74.
[8] J. L. Dupree, R. Devries, D. M. Berry, and E. Lank, “Privacy personas:

Clustering users via attitudes and behaviors toward security practices,” in
Proceedings of the 2016 CHI Conference on Human Factors in Computing

Systems. ACM, 2016, pp. 5228–5239.
[9] E. White, “Who are mort, elvis, and einstein?” May 2006. [Online].

Available: https://blogs.msdn.microsoft.com/ericwhite/2006/05/11/who-
are-mort-elvis-and-einstein/

[10] J. Pruitt and J. Grudin, “Personas: practice and theory,” in Proceedings

of the 2003 conference on Designing for user experiences. ACM, 2003,
pp. 1–15.

[11] E. Friess, “Personas and decision making in the design process: an
ethnographic case study,” in Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems. ACM, 2012, pp. 1209–1218.

[12] M. Burnett, S. Stumpf, J. Macbeth, S. Makri, L. Beckwith, I. Kwan,
A. Peters, and W. Jernigan, “Gendermag: A method for evaluating
software’s gender inclusiveness,” Interacting with Computers, p. iwv046,
2016.

[13] N. Marsden and M. Haag, “Evaluation of gendermag personas based on
persona attributes and persona gender,” in International Conference on

Human-Computer Interaction. Springer, 2016, pp. 122–127.
[14] T. H. Davenport, “Rethinking knowledge work: A strategic approach,”

McKinsey Quarterly, vol. 1, no. 11, pp. 88–99, 2011.
[15] N. Mundbrod, J. Kolb, and M. Reichert, “Towards a system support of

collaborative knowledge work,” in International Conference on Business

Process Management. Springer, 2012, pp. 31–42.
[16] M. Maram, P. Prabhakaran, S. Murthy, and N. Domala, “Sixteen roles

performed by software engineers in first one year,” in 2009 22nd

Conference on Software Engineering Education and Training, 2009.
[17] D. Ford, T. Zimmermann, C. Bird, and N. Nagappan, “Appendix to

personas in practice: Adapting knowledge worker actions to software
engineer,” https://www.microsoft.com/en-us/research/publication/
appendix-personas-practice-adapting-knowledge-worker-actions-
software-engineer/, Tech. Rep. MSR-TR-2016-75, 2016.

[18] B. E. Thomas and J. P. Baron, “Evaluating knowledge worker productivity:
literature review,” DTIC Document, Tech. Rep., 1994.

[19] B. Kitchenham and S. Pfleeger, “Personal opinion surveys,” Guide to

Advanced Empirical Software Engineering, pp. 63–92, 2008.
[20] P. Morrel-Samuels, “Getting the truth into workplace surveys,” Harvard

business review, vol. 80, no. 2, pp. 111–118, 2002.
[21] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman,

and A. Y. Wu, “An efficient k-means clustering algorithm: Analysis and
implementation,” IEEE transactions on pattern analysis and machine

intelligence, vol. 24, no. 7, pp. 881–892, 2002.
[22] K. Goodwin, “Getting from research to personas: harnessing the power of

data,” https://www.cooper.com/journal/2002/11/getting from research
to perso, 2008.

[23] M. Harper and P. Cole, “Member checking: can benefits be gained similar
to group therapy?” The Qualitative Report, vol. 17, no. 2, pp. 510–517,
2012.

[24] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of
modern code review,” in Proceedings of the 2013 international conference

on software engineering. IEEE Press, 2013, pp. 712–721.
[25] T. Barik, R. DeLine, S. Drucker, and D. Fisher, “The bones of the system:

A case study of logging and telemetry at microsoft,” in Proceedings of

the 38th International Conference on Software Engineering Companion,
ser. ICSE ’16. ACM, 2016, pp. 92–101.

[26] P. Sachs, “Transforming work: collaboration, learning, and design,”
Communications of the ACM, vol. 38, no. 9, pp. 36–44, 1995.

[27] R. A. Settersten and G. O. Hagestad, “What’s the latest? ii. cultural age
deadlines for educational and work transitions,” The Gerontologist, pp.
602–613, 1996.

[28] M. Q. Patton, Qualitative evaluation and research methods. SAGE
Publications, inc, 1990.

[29] W. S. Humphrey, A discipline for software engineering. Addison-Wesley
Longman Publishing Co., Inc., 1995.

[30] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical software engineering,
vol. 14, no. 2, pp. 131–164, 2009.

[31] V. R. Basili, “The role of experimentation in software engineering: past,
current, and future,” in Proceedings of the 18th international conference

on Software engineering. IEEE Computer Society, 1996, pp. 442–449.
[32] P. L. Li, A. J. Ko, and J. Zhu, “What makes a great software engineer?”

in Proceedings of the 37th International Conference on Software

Engineering-Volume 1. IEEE Press, 2015, pp. 700–710.
[33] S. Beecham, N. Baddoo, T. Hall, H. Robinson, and H. Sharp, “Motivation

in software engineering: A systematic literature review,” Information and

software technology, vol. 50, no. 9, pp. 860–878, 2008.
[34] H. Zhu, M. Zhou, and P. Seguin, “Supporting software development with

roles,” IEEE Transactions on Systems, Man, and Cybernetics-Part A:

Systems and Humans, vol. 36, no. 6, pp. 1110–1123, 2006.
[35] S. Chimalakonda and K. V. Nori, “On the nature of roles in software

engineering,” in Proceedings of the 7th International Workshop on

Cooperative and Human Aspects of Software Engineering. ACM, 2014,
pp. 91–94.

